China high quality 100% Oil Free Diaphragm Compressor 150bar Carbon Dioxide Gas CO2 Recovery Compressor air compressor CHINAMFG freight

Product Description

Diaphragm Compressor 100% purity no leakage Oil-free Oxygen Booster Compressor 

The diaphragm compressor booster is a special structure of the volume-type compressor with high compression ratio, good leak tightness, compressed gas without lubricating oil and other CHINAMFG impurities contaminated features, So it’s suitable for high purity compression, rare, valuable, inflammable, explosive, toxic, harmful, corrosive, and high pressure gas

Advantages of Diaphragm compressor:
1.  Oil-free compression due to the hermetic separation between gas and oil chamber.
2.  Abrasion-free compression due to static seals in the gas stream
3.  Automatic shutdown in case of a diaphragm failure prevents damage
4.  High Compression Ratios-Discharge pressure up to 1000bar.
5.  Contamination Free Compression
6.  Corrosion Resistance
7.  High Reliability

As a displacement compressor with special, diaphragm compressor is characterized by large compression ratiogood sealing performance, and that the compress air will not be polluted by lubricant or other CHINAMFG impurities.Therefore diaphragm compressor is applicable to compress high-purityrare and precious, flammable and explosive, toxic and hazardous,corrosive and high pressure gases.
CHINAMFG diaphragm compressors consist of 4 types that are Z, V, L and D type.The exhaust pressure ranges from 1.3 to 100 Mpa. The products are widely used in the industries of national defense, scientific research, petrochemical, nuclear power, parmaceutical, food-stuff and gas separation.

Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
Clients’ inquiries should contain related parameters 
A. The gas compression medium 
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.

Technical Paramter of Oil Free Diaphragm Compressor

GZ type Diaphragm Compressor Technical Parameters
No. Model F.A.D (Nm3/min) Inlet Pressure 
( Mpa)
Exhuast Pressure 
(Mpa)
Power 
(KW)
Speed
r/min
Dimension
(L×W×H)mm
N.W 
Weight (t)  
Voltage
V
1 G2V-10/8-160 10 0.8 16 5.5 400 1550*900*1050 0.8 380
2 G2V-5/3.5~150 5 0.35 15 5.5 400 1550*900*1050 0.8 380
3 G2V-10/4~320 10 0.4 32 5.5 430 1650*850*1250 0.8 380
4 G3V-240/5~12 240 0.5 1.2 18.5 400 1860*1200*1585 2 380
5 G3V-1200/75~83 1200 7.5 8.3 18.5 400 1780*1050*1750 1.8 380
6 G3V-80/13~150 80 1~1.5 15 22 330 2400*1350*1465 2.1 380
7 G3V-30/5~315 30 0.5 31.5 15 400 2571*955*1455 1.8 380
8 G3V-80/7~150 80 0.7 15 22 400 2302*1385*1444 2.5 380
9 G2V-25/6~150 25 0.6 15 7.5 400 1500*775*1075 0.8 380
10 G2.5V-10/160 10 Normal 16 7.5 400 1650*1571*1400 0.95 380
11 G2.5V-20/1~160 20 0.1 16 11 400 1650*1571*1400 0.95 380
12 G2.5V-16/2.5~160 16 0.25 16 7.5 400 1650*1571*1400 0.95 380
13 G3V-100/24~125 100 2.4 12.5 22 400 2160*1250*1500 1.8 380
14 G4V-220/99-349 220 7.0~25 34.9 37 400 2492*1840*1610 3.2 380
15 G2Z-45/150~350 45 10~20 35 7.5 400 1610*790*1380 0.55 380
16 G2Z-5/30~400 5 3 40 5.5 400 1560*790*1470 0.55 380
17 G2.5Z-30/32~170 30 3.2 17 7.5 400 1550*650*1530 0.7 380
18 G3Z-600/75~83 600 7.5 8.3 11 400 1780*1050*1750 1.3 380
19 G3Z-85/100~350 85 5~25 35 18.5 400 1900*1240*1760 1.6 380
20 G3Z-150/150~350 150 15 35 18.5 400 1780*1050*1750 1.8 380
21 G2.5Z-40/7~30 40 0.7 3 7.5 400 1653*1372*1470 0.9 380
22 G2.5Z-100/20~35 100 2 3.5 5.5 400 1330*750*1530 0.9 380
23 GV3-110/8~150 110 0.8 15 30 400 2370*1458*1630 3 380
24 G3V-150/3.5~30 150 0.35~0.55 3 30 400 2543*1835*2036 3.21 380
25 G3V-60/0.38~9.3 60 0.038 0.93 15 400 2030*1520*1750 72 380

 

No. Model F.A.D (Nm3/min) Inlet Pressure 
( Mpa)
Exhuast Pressure 
(Mpa)
Power 
(KW)
Speed
r/min
Dimension
(L×W×H)mm
N.W 
Weight (t)  
Voltage
V
27 GD6-140/0.5~6.5 140 0.05 0.65 45 363 4300*3300*2100 10 380
28 GD6-150/0.5~6 150 0.05 0.6 45 363 4300*3300*2100 10 380
29 GD6-868/11~31 868 1.1 3.1 75 365 4215*3250*2210 10 380
30 GD6-240/6~150 240 0.6 15 75 400 3500*2300*1600 8.6 380
31 GD6-1000/14~50 1000 1.4 5 75 400 3500*2300*1750 8.2 380
32 GD6H-570/1.5~6 570 0.15 0.6 55 365 4300*3300*2100 13 380
33 GD6H-212/0.2~6 212 0.02 0.6 55 365 4300*3300*2100 13 380
34 GD6H-750/4~22 750 0.4 2.2 90 420 4460*3340*2200 10.8 380
34 GD6H-450/0.8~5 450 0.08 0.5 55 420 4460*3400*2300 13 380
36 GD8-920/8~30 920 0.8 3 110 365 4340*3520*2390 11 380
37 GD8T-90/160 90 Normal 16 55 400 4500*3800*2300 14 380
38 GD-120/70~800 120 7 80 37 400 3100*2000*1650 4.2 380
39 GD-50/35 50 Normal 3.5 22 400 2700*1500*1400 3.4 380
40 GL4-240/20~200 240 2 20 55 400 3340*1900*2157 4 380
41 GL4-300/6~30 300 0.6 3 45 400 3340*1900*2200 4.5 380
42 GD8-1000/14~50 1000 1.4 16 75 400 3500*2300*1750 8.2 380
43 GD8H-750/3~21 750 0.3 2.1 100 420 3900*3200*1900 13.8 380
44 GD8-400/6~250 400 0.6 25 132 400 3900*2949*1560 12 380
45 GD25-290/200 290 0 19.6 220 363 10000*6000*3000 30 380
46 GD25-290/4~200 660 0.4 19.6 250 363 10000*6000*3000 30 380
47 GD25-290/10~200 900 1 19.6 300 363 10000*6000*3000 30 380
48 GD25-290/20~200 1500 2 19.6 300 363 10000*6000*3000 30 380

 

No. Model F.A.D (Nm3/h) Inlet Pressure 
( Mpa)
Exhuast Pressure 
(Mpa)
Power 
(KW)
Speed
r/min
Dimension
(L×W×H)mm
N.W 
Weight (t)  
1 GL-40/100 40 0 10 30 400 3700*1750*2000 3.8
2 GL-900/300-500 900 30 50 55 420 3500*2350*2300 3.5
3 GL-100/3-200 100 0.3 20 55 400 3700*1750*2150 5.2
4 GL-48/140 48 0 14 22 400 3800*1750*2100 5.7
5 GL-200/6-60 200 0.6 6 45 400 3800*1750*2100 5
6 GL-140/6-200 140 0.6 20 55 363 3500*1380*2350 4.5
7 GL-900/10-15 900 1 1.5 37 420 3670*2100*2300 6.5
8 GL-770/6-20 770 0.6 2 55 420 4200*2100*2400 7.6
9 GL-90/4-200 90 0.4 20 45 400 3500*2100*2400 7
10 GL-1900/21-30 1900 2.1 3 55 363 3700*2100*2400 7
11 GL-300/20-200 300 2 20 45 420 3670*2100*2300 6.5
12 GL-200/15-200 200 1.5 20 45 420 3500*2100*2300 6
13 GL-330/8-30 330 0.8 3 45 420 3570*1600*2200 4
14 GL-150/6-200 150 0.6 20 55 400 3500*1600*2100 3.8
15 GL-300/6-25 300 0.6 2.5 45 400 3450*1600*2100 4
16 GL4-240/20~200 240 2 20 55 400 3340*1900*2157 4
17 GL4-300/6~30 300 0.6 3 45 400 3340*1900*2200 4.5

Main technical data

Cylinder 
All the cylinders comprise upper plate, diaphragms, and cylinder body etc. The diaphragms are clamped between the cylinder cover and cylinder body. The cylinder cover and cylinder body each has a concave recess hollowed out in their contacting faces. The gas cylinder is formed between cylinder cover concave recess and diaphragms. Both suction valve and discharge valve are fitted on the upper plate. Among of them, the discharge valve is located on the center of the upper plate. The evenly located small oil holes are on the cylinder body to deliver the oil pressure inside the oil cylinder to the bottom of diaphragms (each diaphragm compressor’s cylinder has 3 piece diaphragm.) 

Pressure Regulating Valve 
The oil pressure of oil cylinder is regulated by the tension of the valve spring.In case the oil pressure is higher than the regulated value, turn the regulating bolt counter-clockwise to loosen the spring tension, but turn the regulating bolt clockwise to tighten the spring, when the oil pressure is lower than the regulated value. When the oil pressure meets the required value, the regulating bolt must be locked with a lock-nut. The oil pressure of the oil cylinder shall always be higher than the discharge pressure by 15~20%. But the oil and gas differential pressure shall not be lower than 0.3MPa or higher than 1.5MPa. 

Cooler
The cooler structure is the double-wall pipe type. The circular space between the outer and inner pipe is the cooling water passage and the inner pipe is the gas passage. Normally the water inlet port is at the lower side and the water outlet port is at the upper side. The flow direction of cooling water and gas is on the contrary.

Oil Pressure Measuring Device 
The measuring device of oil cylinder discharge pressure consists of shock-proof pressure gauge, check valve and unloading valve. The case of the pressure gauge is totally airproof and filled with damping liquid. The inner devices of gauge is immersed in the liquid, which makes the pressure gauge hands stable through the function of the viscosity of damping liquid. The unloading valve is fitted under the gauge to discharge the remained air in the oil pipeline and to unload the oil pressure gauge. Also the check valve connecting with oil cylinder through pipeline is fitted under the unloading valve.   

Oil pipes 
Oil pipes consist of lube oil pipe and oil pressure secure system.
The lubrication for the driving device adopts gear oil pump circulation pressure lubricating. The lube oil stored in the frame oil tank enters into the gear oil pump after being filtered and is pressed into the oil holes in the crankshaft through the gear oil pump to lubricate the crankshaft friction surface. At the same time, part of the lube oil reaches the crosshead pin and crosshead along the oil holes in the connecting rod to lubricate the friction surface. The oil pressure of gear oil pump shall be kept between 0.3~0.5Mpa, and the bearings at the 2 ends of crankshaft is splash lubricated. 
Oil pressure secure system consists of oil compensating pipe, pressure-measuring pipe and oil return pipe. The oil output from the oil compensating pump will supplement oil for compressor cylinders through the oil compensating pipe and the excess oil returns to the crankcase through the pressure-regulating valve.

FAQ
Q1: What’s your delivery time?
A: Generally CHINAMFG with 20-30 days, Reciprocating compressor & diaphragm high pressure gas comrpessor with 12-20weeks to customize producing.

Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary. 

Q3: How long could your air compressor be used?
A: Generally, more than 10 years.

Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience.And also we can do ODM for you.

Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.

Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.

Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service. 

Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.

How to contact with us?
Send your Inquiry Details in the Below, or Click “Send inquiry to supplier” to check more other Gas Compressor machine equipment!

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1
Warranty: 1
Lubrication Style: Oil-free
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Samples:
US$ 18888/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for High-Pressure Applications?

Gas air compressors can be used for high-pressure applications, but there are certain considerations to keep in mind. Here’s a detailed explanation:

Gas air compressors are available in various sizes and configurations, and their suitability for high-pressure applications depends on factors such as the compressor’s design, power output, and the specific requirements of the application. Here are some key points to consider:

1. Compressor Design:

Not all gas air compressors are designed to handle high-pressure applications. Some compressors are specifically built for low-to-medium pressure ranges, while others are designed to deliver higher pressure outputs. It is important to select a gas air compressor model that is rated for the desired pressure range. The compressor’s specifications and manufacturer’s guidelines will provide information on the maximum pressure it can generate.

2. Power Output:

The power output of a gas air compressor is a crucial factor in determining its suitability for high-pressure applications. High-pressure compressors require more power to achieve and sustain the desired pressure levels. It is important to ensure that the gas air compressor has sufficient power output to meet the demands of the specific high-pressure application.

3. Cylinder Configuration:

The cylinder configuration of the gas air compressor can also affect its ability to handle high-pressure applications. Compressors with multiple cylinders or stages are designed to generate higher pressures compared to compressors with a single cylinder. Multi-stage compressors compress the air in multiple steps, allowing for higher pressure ratios.

4. Safety Considerations:

High-pressure applications require careful attention to safety considerations. Gas air compressors used for high-pressure applications should be equipped with appropriate safety features such as pressure relief valves, pressure gauges, and safety shut-off systems. It is crucial to follow all safety guidelines and regulations to ensure safe operation.

5. Maintenance and Inspection:

Regular maintenance and inspection are essential for gas air compressors used in high-pressure applications. High-pressure operation can put additional stress on the compressor components, and proper maintenance helps ensure optimal performance and safety. Regular inspections and adherence to maintenance schedules will help identify and address any potential issues before they become major problems.

6. Application-specific Considerations:

Each high-pressure application may have specific requirements and considerations. It is important to evaluate factors such as the required pressure level, duty cycle, flow rate, and any specific environmental conditions that may impact the performance of the gas air compressor. Consulting with the compressor manufacturer or a qualified professional can help determine the suitability of a gas air compressor for a particular high-pressure application.

In summary, gas air compressors can be used for high-pressure applications, provided that they are designed, rated, and configured appropriately. It is essential to consider factors such as compressor design, power output, safety features, maintenance requirements, and application-specific considerations to ensure safe and reliable operation at high pressures.

air compressor

Can Gas Air Compressors Be Used for Natural Gas Compression?

Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:

1. Different Compressed Gases:

Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.

2. Safety Considerations:

Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.

3. Equipment Compatibility:

Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.

4. Efficiency and Performance:

Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.

5. Regulatory Compliance:

Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.

6. Industry Standards and Practices:

The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.

In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China high quality 100% Oil Free Diaphragm Compressor 150bar Carbon Dioxide Gas CO2 Recovery Compressor   air compressor CHINAMFG freightChina high quality 100% Oil Free Diaphragm Compressor 150bar Carbon Dioxide Gas CO2 Recovery Compressor   air compressor CHINAMFG freight
editor by CX 2024-04-25

Recent Posts